Notes on Kullback-Leibler Divergence and Likelihood

نویسنده

  • Jonathon Shlens
چکیده

The Kullback-Leibler (KL) divergence is a fundamental equation of information theory that quantifies the proximity of two probability distributions. Although difficult to understand by examining the equation, an intuition and understanding of the KL divergence arises from its intimate relationship with likelihood theory. We discuss how KL divergence arises from likelihood theory in an attempt to provide some intuition and reserve a rigorous (but rather simple) derivation for the appendix. Finally, we comment on recent applications of KL divergence in the neural coding literature and highlight its natural application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on Kullback-Leibler Divergence and Likelihood Theory

The Kullback-Leibler (KL) divergence is a fundamental equation of information theory that quantifies the proximity of two probability distributions. Although difficult to understand by examining the equation, an intuition and understanding of the KL divergence arises from its intimate relationship with likelihood theory. We discuss how KL divergence arises from likelihood theory in an attempt t...

متن کامل

Model Confidence Set Based on Kullback-Leibler Divergence Distance

Consider the problem of estimating true density, h(.) based upon a random sample X1,…, Xn. In general, h(.)is approximated using an appropriate in some sense, see below) model fƟ(x). This article using Vuong's (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(.).Application of such confide...

متن کامل

Some statistical inferences on the upper record of Lomax distribution

In this paper, we investigate some inferential properties of the upper record Lomax distribution. Also, we will estimate the upper record of the Lomax distribution parameters using methods, Moment (MME), Maximum Likelihood (MLE), Kullback-Leibler Divergence of the Survival function (DLS) and Baysian. Finally, we will compare these methods using the Monte Carlo simulation.

متن کامل

Park Estimation of Kullback – Leibler divergence by local likelihood

Motivated from the bandwidth selection problem in local likelihood density estimation and from the problem of assessing a final model chosen by a certain model selection procedure, we consider estimation of the Kullback–Leibler divergence. It is known that the best bandwidth choice for the local likelihood density estimator depends on the distance between the true density and the ‘vehicle’ para...

متن کامل

A ug 2 00 8 Statistical models , likelihood , penalized likelihood and hierarchical likelihood

We give an overview of statistical models and likelihood, together with two of its variants: penalized and hierarchical likelihood. The Kullback-Leibler divergence is referred to repeatedly, for defining the misspecification risk of a model, for grounding the likelihood and the likelihood crossvalidation which can be used for choosing weights in penalized likelihood. Families of penalized likel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1404.2000  شماره 

صفحات  -

تاریخ انتشار 2014